THE DIGITAL INFRASTRUCTURES FOR 21st CENTURY SCIENCE

NICOLA MARZARI, EPFL

@ NASA/JPL-Caltech

ZOOMBOOM

Now, Zoom is worth more than the top seven airlines combined.

Source: YCharts, as of May 15, 2020. Top airlines are selected based on their 2019 revenue. Concept inspired by Lennart Dobravsky at Lufthansa Innovation Hub Total Airlines

FORTUNE COOKIE #1 UNDERESTIMATING DIGITAL IS NOT GOOD FOR YOU

100% GROWTH EVERY 14-16 MONTHS

A calculation that took one year in 1992 takes one second in 2021 (33-million-fold increase).

And this is just with bits: neurons are in, and qubits on the horizon. 21st-century science and discovery will be driven by computational science.

IMPACT OF COMPUTATIONAL QUANTUM MECHANICS

THE TOP 100 PAPERS: 12 papers on densityfunctional theory in the top-100 most cited papers in the entire scientificmedical-engineering literature, ever.

NATURE, OCT 2014

MOST CITED PAPERS IN THE HISTORY OF APS

	Journal	# cites	Title	Author(s)
1	PRL (1996)	78085	Generalized Gradient Approximation Made Simple	Perdew, Burke, Ernzerhof
2	PRB (1988)	67303	Development of the Colle-Salvetti Correlation-Energy	Lee, Yang, Parr
3	PRB (1996)	41683	Efficient Iterative Schemes for Ab Initio Total-Energy	Kresse and Furthmuller
4	PR (1965)	36841	Self-Consistent Equations Including Exchange and Correlation	Kohn and Sham
5	PRA (1988)	36659	Density-Functional Exchange-Energy Approximation	Becke
6	PRB (1976)	31865	Special Points for Brillouin-Zone Integrations	Monkhorst and Pack
7	PRB (1999)	30940	From Ultrasoft Pseudopotentials to the Projector Augmented	Kresse and Joubert
8	PRB (1994)	30801	Projector Augmented-Wave Method	Blochl
9	PR (1964)	30563	Inhomogeneous Electron Gas	Hohenberg and Kohn
10	PRB (1993)	19903	Ab initio Molecular Dynamics for Liquid Metals	Kresse and Hafner
11	PRB (1992)	17286	Accurate and Simple Analytic Representation of the Electron	Perdew and Wang
12	PRB (1990)	15618	Soft Self-Consistent Pseudopotentials in a Generalized	Vanderbilt
13	PRB (1992)	15142	Atoms, Molecules, Solids, and Surfaces - Applications of the	Perdew, Chevary,
14	PRB (1981)	14673	Self-Interaction Correction to Density-Functional Approx	Perdew and Zunger
15	PRB (1986)	13907	Density-Functional Approx. for the Correlation-Energy	Perdew
16	RMP (2009)	13513	The Electronic Properties of Graphene	Castro Neto et al.
17	PR (1934)	12353	Note on an Approximation Treatment for Many-Electron Systems	Moller and Plesset
18	PRB (1972)	11840	Optical Constants on Noble Metals	Johnson and Christy
19	PRB (1991)	11580	Efficient Pseudopotentials for Plane-Wave Calculations	Troullier and Martins
20	PRL (1980)	10784	Ground-State of the Electron-Gas by a Stochastic Method	Ceperley and Alder

Marzari (11 Apr 2019)

FORTUNE COOKIE #2

COMPUTATIONAL SCIENCE IS HERE, WITH MAJOR IMPACT

SOME EU INFRASTRUCTURES IN THE PHYSICAL SCIENCES

• ESA **5.72 € billion/year** (2019)

• ITER **22 to 65 \$ billion** (2007-35)

• CERN 1.3 CHF billion/year (2019)

QUANTUM ESPRESSO vs CERN

www.quantum-espresso.org

List of CERN publications in 2019

1762 CERN publications were selected for inclusion in the list corresponding to the CERN 2019 annual report. Of these 944 vere articles in journals, 714 vere contributions published in conference proceedings, 62 vere reports, books, book chapters or conference proceedings.

CERN (2019): 944 articles, 714 proceedings

QE (2019, Web of Science): ~2300 articles

FORTUNE COOKIE #3

MAYBE WE SHOULD DO MORE

3 Technologies That Could Create Trillion-Dollar Markets Over the Next Decade

By Greg Satell Updated April 21, 2019 9:00 a.m. ET

Yet today, we're in the midst of a materials revolution. Powerful simulation techniques, combined with increased computing power and machine learning, are enabling researchers to automate much of the discovery process, vastly accelerating the development of new materials

BARRON'S (April 2019)

MATERIALS ARE KEY TO SOCIETAL WELL BEING

We need novel materials for:

- Energy harvesting, conversion, storage, efficiency
- Environmental protection and reparation
- High-tech and high-value industries
- Information and communication technologies
- Health care and biomedical engineering
- Pharmaceuticals (crystallization, stability, polytypes)
- Monitoring, provenance, and safety of foods
- Fundamental science (graphene and 2D materials, topological insulators, entangled spins for quantum computing, high-T_c)
- Experimental science (detectors, sensors, magnets)

A FEW EASY PIECES

IF WE FLY AGAIN...

THE MOST IMPORTANT MATERIAL EVER?

MATERIALS MODELLING

The frontiers and the challenges

Materials simulations have become a dominant force in the world of science and technology. The intellectual challenges lying ahead to sustain such a paradigm shift are discussed.

Nicola Marzari

1) PREDICTIVE ACCURACY

2) REALISTIC COMPLEXITY

3) MATERIALS' INFORMATICS

NATURE MATERIALS | VOL 15 | APRIL 2016 | www.nature.com/naturematerials

ADDRESSING THE REALISTIC COMPLEXITY OF MATERIALS

• COMPLEX SYSTEMS

COMPLEX PROCESSES

MACHINE-LEARNING QUANTUM MECHANICS

Dislocation glide by kink-pair nucleation and propagation

D. Dragoni, T. Duff, G. Csányi, and N. Marzari, Phys. Rev. Materials 2, 013808 (2018)

F. Maresca, D. Dragoni, G. Csányi, N. Marzari, and W. A. Curtin, npj Comput Mater 4, 69 (2018)

MACHINE-LEARNING QUANTUM MECHANICS

D. Dragoni, T. Duff, G. Csányi, and N. Marzari, Phys. Rev. Materials 2, 013808 (2018)

F. Maresca, D. Dragoni, G. Csányi, N. Marzari, and W. A. Curtin, npj Comput Mater 4, 69 (2018)

COMPLEXITY: MULTI-SCALE MODELING FOR ELECTROCHEMISTRY

O. Andreussi *et al.,* J. Chem. Phys. 136, 064102 (2012) F. Nattino *et al.,* J. Chem. Phys. 150, 041722 (2019)

COMPLEXITY: PREDICTING THE COLOUR OF A MATERIAL

G. Prandini, G.M. Rignanese, and N. Marzari, npj Computational Materials 5, 129 (2019)

COMPLEXITY: MULTI-PHYSICS MODELING OF TRANSPORT

Figure 1 Electrical resistivity of graphene as a function of temperature and doping (ρ , electrical resistivity; *T*, temperature; *n*, carrier density). Left panel: first-principles results obtained using a combination of density-functional perturbation theory, many-body perturbation theory and Wannier interpolations to solve the Boltzmann transport equation. Right panel: experimental data. Adapted from ref. 4, American Chemical Society.

C.-H. Park *et al.,* Nano Letters (2014) T. Y. Kim, C.-H. Park, and N. Marzari, Nano Letters (2016)

THERMOELECTRICS AND THERMAL BARRIER COATINGS

$$\begin{split} \kappa^{\alpha\beta} &= \kappa_{\rm P}^{\alpha\beta} + \frac{\hbar^2}{k_B T^2} \frac{1}{\mathcal{V}N_{\rm c}} \sum_{\boldsymbol{q}} \sum_{s \neq s'} \frac{\omega(\boldsymbol{q})_s + \omega(\boldsymbol{q})_{s'}}{2} V^{\alpha}(\boldsymbol{q})_{s,s'} V^{\beta}(\boldsymbol{q})_{s',s} \times \\ & \times \frac{\omega(\boldsymbol{q})_s \bar{N}^T(\boldsymbol{q})_s [\bar{N}^T(\boldsymbol{q})_s + 1] + \omega(\boldsymbol{q})_{s'} \bar{N}^T(\boldsymbol{q})_{s'} [\bar{N}^T(\boldsymbol{q})_{s'} + 1]}{4[\omega(\boldsymbol{q})_{s'} - \omega(\boldsymbol{q})_s]^2 + [\Gamma(\boldsymbol{q})_s + \Gamma(\boldsymbol{q})_{s'}]^2} [\Gamma(\boldsymbol{q})_s + \Gamma(\boldsymbol{q})_{s'}] \end{split}$$

RELIABLY, REPRODUCIBLY, HIGH-THROUGHPUT

VOLUME 88, NUMBER 25

PHYSICAL REVIEW LETTERS

24 JUNE 2002

Combined Electronic Structure and Evolutionary Search Approach to Materials Design

G. H. Jóhannesson, T. Bligaard, A. V. Ruban, H. L. Skriver, K. W. Jacobsen, and J. K. Nørskov Center for Atomic-Scale Materials Physics, Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark (Received 20 February 2002; published 10 June 2002)

We show that density functional theory calculations have reached an accuracy and speed making it possible to use them in conjunction with an evolutionary algorithm to search for materials with specific properties. The approach is illustrated by finding the most stable four component alloys out of the 192016 possible fcc and bcc alloys that can be constructed out of 32 different metals. A number of well known and new "super alloys" are identified in this way.

DOI: 10.1103/PhysRevLett.88.255506

PACS numbers: 81.05.Bx, 61.66.Dk, 71.15.Mb

EXAMPLE: COMPUTATIONAL EXFOLIATION OF ALL KNOWN INORGANIC MATERIALS

PHYSICS AND CHEMISTRY IN LOW DIMENSIONS

HOW DO WE PRODUCE 2D MATERIALS?

Mechanical (e.g. Geim/Novoselov, fig. from Nature/NUS) or liquid exfoliation (e.g. Nicolosi/Coleman, fig. from Science), electrochemical intercalation. Also, bottomup: CVD and wet chemical synthesis.

HIGH-THROUGHPUT COMPUTATIONAL EXFOLIATION

AUTOMATIC WORKFLOWS: FROM STRUCTURE TO PROPERTY

LET'S START FROM A MATERIAL (VOBr₂)

FROM DATABASE ENTRY TO A WORKING STRUCTURE

3D RELAXATION

MAGNETIC SCREENING OF THE 2D MONOLAYER

REMOVING MECHANICAL INSTABILITIES

ALL AUTOMATED...

FINALLY...

215 VBr₂O (Pmm2)

Info and properties (for more details and definitions see page 2)

Formula VBr₂O Spacegroup Pmm2 VCl₂O (Pmm2) Prototype Parent 3D VBr₂O Source DB ICSD DB ID 24381

- DF2-C09 Binding energy [meV/Å²] 14.4 rVV10 Binding energy [meV/Å²] 21.6Band gap [eV] 0.9 Magnetic State AFM Tot. Magnetization $[\mu_B/\text{cell}]$ 0.0
 - Abs. Magnetization $[\mu_B/\text{cell}]$ 2.54

Band structure and phonon dispersions

Band structure: energy bands of VBr₂O (66 electrons) in Phonon dispersions: phonon frequencies of VBr₂O (8 a window around the chemical potential and along a highsymmetry path. The number of bands included in the calculation is 80.

atoms/cell) along a high-symmetry path.

Crystal structure

Structural parameters: cell (top) and atomic positions (bottom) of VBr₂O in cartesian coordinates.

		x [Å]	<i>y</i> [Å]	<i>z</i> [Å]
<i>a</i> 1		3.80622044	0.00000000	0.00000000
a_2		0.00000000	7.17029927	0.00000000
a_3		0.00000000	0.00000000	19.47346306
		x [Å]	<i>y</i> [Å]	z [Å]
٠	Br	2.00107500	5.37772439	-1.78545446
٠	\mathbf{Br}	2.00107500	1.79257489	-1.78545446
۹	V_1	1.70214333	3.58514964	0.00000000
٠	V_2	1.70214341	0.00000000	0.00000000
٠	\mathbf{Br}	2.00107500	5.37772439	1.78545446
٠	Br	2.00107500	1.79257489	1.78545446
•	O_1	0.06788642	3.58514964	0.00000000
•	O_2	0.06788661	0.00000000	0.00000000

Orthographic projections: different views of VBr₂O from the x axis (left), the y axis (bottom) and the z axis (center).

HOW MANY CANDIDATES? GEOMETRIC SCREENING

	Unique to COD	Unique to ICSD	Common to both	Total
Entries analyzed	307616	172370		479986 *
CIF inputs	99212	87070		186282*
Unique 3D structures	60354	34548	13521	108423
Layered 3D structures	1180	3257	1182	5619

*At this level unicity is not tested

HOW MANY CANDIDATES? QUANTUM SCREENING

Difference in interlayer distance when computed with/without vdW functionals (%)

- $E_b < 30 \text{ meV/Å}^2$ (DF2-C09) or $E_b < 35 \text{ meV/Å}^2$ (rVV10) \rightarrow 2D, easily exfoliable
- In-between → 2D, potentially exfoliable
- $E_b > 130 \text{ meV/} \text{Å}^2 \rightarrow \text{not } 2D$ (discarded)

WHAT TO DO NEXT?

FROM ELECTRONICS...

... TO THE LARGEST SUPERCONDUCTING TC IN 2D...

H. Jun et al., Advanced Materials 31, 1902709 (2019)

D. Campi, S. Kumari, and N. Marzari, Nano Letters 21, 3435 (2021)

...TO MATERIALS: PHOTOCATALYSIS, MEMBRANES

Science Advances (2019), and under review (2021)

THE DISCOVERY OF JACUTINGAITE

THE DISCOVERY OF JACUTINGAITE

Classified as potentially exfoliable (binding energy of 60 meV Å⁻²)

A. Marrazzo *et al.*, Phys. Rev. Lett. 120, 117701 (2018)

ROOM-TEMPERATURE KANE-MELE QSHI

A. Marrazzo *et al.,* Phys. Rev. Lett. 120, 117701 (2018) I. Cucchi, *et al.,* Phys. Rev. Lett. 124, 106402 (2020) A. Marrazzo, N. Marzari, and M. Gibertini, Phys. Rev. Res. 2, 012063(R) (2020)

nature MARCH 2018 VOL 13 NO 3 www.nature.com/naturenanotechnology nanotechnology

Computational quest for 2D materials

ENVIRONMENTAL NANOTECHNOLOGY Interacting with the community

> ACHROMATIC METALENSES Visible images

> > NEUROMODULATION Wireless excitement

THERE IS PLENTY OF ROOM AT THE

- High electron/hole mobility devices
- Topological insulators, quantum computing
- Ferromagnetic/spintronics in 2D
- Charge-density waves and superconductors
- Plasmonics, transparent conductors

3D layered parents:

- Solid-state ionic conductors
- Hydrogen or oxygen evolution catalysts
- Membranes for filtration/separation
- Piezo, ferro, and thermoelectrics

N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys, A. Marrazzo, T. Sohier, I. E. Castelli, A. Cepellotti, G. Pizzi and N. Marzari, Nature Nanotechnology 13, 246 (2018)

ALL SOLID-STATE BATTERIES

AUTOMATED SCREENING

L. Kahle, A. Marcolongo, and N. Marzari, Energy & Environmental Science 13, 928 (2020)

SCIENCE IN THE CLOUD: TOWARDS A DIGITAL INFRASTRUCTURE

OPEN SCIENCE TECHNOLOGY STACK

1. Widely used, **open-source community codes**

2. An **operating system** for high-throughput computational science, data pro AiDA¹ reproducibility – <u>http://aiida.net</u>

3. A **work environment** for non specialist where to run simulations

4. A **dissemination platform** for raw and CLOUD CLOUD CLOUD

EXASCALE THROUGH HPC AND HTC

- Pre-exascale systems are being deployed:
 - Switzerland's next flagship supercomputing infrastructure (Alps) CSCS, NVIDIA GPUs
 - EuroHPC LUMI consortium
 Finland, owned in part by Switzerland; AMD processors and GPUs

 Objective: ensure the technology stack (AiiDA, SIRIUS, quantum engines) can run at scale

THE SIRIUS MODEL: DOMAIN-SPECIFIC LIBRARY

Exciting	Quant	Elk							
SIRIUS C++ library									
MPI + OpenMP parallel model with GPU acceleration									
LAPW specific fur	nctionality	Pseudopotential specific functionality							
Common objects: unit cell description, reciprocal lattice description, FFT mesh, G-vector indexing, radial functions (local orbitals or beta projectors) indexing, XC potential generation, etc.									

Automation Sharing

http://www.aiida.net

S.P. Huber et al., Nature Scientific Data (2020)

Data

Environment

ADES MODEL FOR COMPUTATIONAL SCIENCE

Low-level pillars

User-level pillars

S.P. Huber *et al.*, Nature Scientific Data (2020) G. Pizzi *et al.*, Comp. Mat. Sci. 111, 218 (2016)

READY TO GO IN THE QUANTUM MOBILE

20.11.2a

Q Search the docs ...

Quantum Mobile

Releases

USERS

Launching Quantum Mobile

Using Quantum Mobile

VirtualBox FAQ

Troubleshooting

DEVELOPERS

Customise Quantum Mobile

Build a Desktop VM

Build a Cloud VM

Build a Docker container

Create a new ansible role

MAINTAINERS

Developing Quantum Mobile Preparing releases

Theme by the Executable Book Project

← Quantum Mobile

What is Quantum Mobile

Quantum Mobile is a Virtual Machine for computational materials science.

Quantum Mobile provides a uniform environment for quantum mechanical materials simulations. Simulation codes are set up and ready to be used either directly or through the AiiDA python framework for automated workflows and provenance tracking.

Open source throughout

Based on Ubuntu Linux

Pre-built images

Available for Linux, MacOS or Windows computers, using VirtualBox. Or deploy on cloud services like OpenStack or Amazon Elastic Compute Cloud using ansible.

Simulation codes pre-installed

Abinit, BigDFT, CP2K, Fleur, Quantum ESPRESSO, Siesta, Wannier90, Yambo, together with AiiDA, JupyterLab, and the AiiDAlab Jupyter environment.

Tools pre-installed

WANNIER90

atomistic (xcrysden, jmol, cif2cell, ase, pymatgen, seekpath, spglib, pycifrw), visualization (grace, gnuplot, matplotlib, bokeh, jupyter), simulation environment (slurm, OpenMPI, FFT/BLAS/LAPACK, gcc, gfortran, singularity). Modular setup

with individually tested ansible roles. Build your own flavour tailored to your use case.

PostareSOL

🖸 🗘 🛓 🗎 Contents

What is Quantum Mobile

Quantum Mobile Flavours Testimonials Acknowledgements

MATERIALS CLOUD

Indexed by

SCIENTIFIC DATA

L. Talirz *et al.,* Scientific Data 7, 299 (2020)

Discover

MATERIALS CLOUD - DISCOVER

Discover curated data sets

Add DISCOVER section

This section will contain a curated set of results including structures and their properties as generated by NCCR members.

Standard solid-state pseudopotentials (SSSP) DOI 10.24435/materialscloud:2018.0001/v3

Authors: Gianluca Prandini, Antimo Marrazzo, Ivano E. Castelli, Nicolas Mounet & Nicola Marzari Description: A Standard Solid State Pseudopotentials (SSSP) library optimized for precision and efficiency.

2D structures and layered materials **DOI** 10.24435/materialscloud:2017.0008/v2

Authors: Nicolas Mounet, Marco Gibertini, Philippe Schwaller, Davide Campi, Andrius Merkys, Antimo Marrazzo, Thibault Sohier, Ivano E. Castelli, Andrea Cepellotti, Giovanni Pizzi & Nicola Marzari Description: Results from screening known 3D crystal structures finding those that can be computationally exfoliated, producing 2D materials candidates. If you use this work please cite N. Mounet et al, Nat. Nanotech., doi:10.1038/s41565-017-0035-5 (2018).

2D topological insulators

Authors: Antimo Marrazzo, Marco Gibertini, Davide Campi, Nicolas Mounet & Nicola Marzari Description: Results from screening exfoliable materials for 2D topological insulators (Quantum Spin Hall Insulators).

MATERIALS CLOUD - ARCHIVE

Asymmetric azide-alkyne Huisgen cycloaddition on chiral metal surfaces

DOI 10.24435/materialscloud:tx-8g

Samuel Stolz, Michael Bauer, Carlo A. Pignedoli, Nils Krane, Max Bommert, Elia Turco, Nicolo Bassi, Amogh Kinikar, Néstor Merino-Diez, Roland Hany, Harald Brune, Oliver Gröning, Roland Widmer

The record contains the data supporting our recent findings on asymmetric azide-alkyne Huisgen cycloaddition on chiral metal surfaces: Achieving fundamental understanding of enantioselective heterogeneous synthesis is marred by the permanent presence of multitudinous arrangements of catalytically active sites in real catalysts. We address this issue by using structurally comparatively simple, well-defined, and chiral intermetallic PdGa[111] surfaces as catalytic substrates. We demonstrate the impact of chirality transfer and ensemble effect for the thermally activated azide-alkyne Huisgen cycloaddition between 3-(4-azidophenyl)propionic acid and 9-ethynylphenanthrene on these threefold symmetric intermetallic surfaces under ultrahigh vacuum conditions. Specifically, we encounter a dominating ensemble effect for this reaction as on the Pd3-terminated PdGa[111] surfaces no stable heterocoupled structures are created, while on the Pd1-terminated PdGa[111] surfaces, the cycloaddition ...

Latest version: v1 Publication date: Mar 02, 2021

Reversible dehalogenation in on-surface aryl-aryl coupling

DOI 10.24435/materialscloud:71-t1

Samuel Stolz, Marco Di Giovannantonio, José I. Urgel, Qiang Sun, Amogh Kinikar, Gabriela Borin Barin, Max Bommert, Roman Fasel, Roland Widmer

The record contains the data to support the findings of our recent work on reversibility of the dehalogenation process in on-surface aryl-aryl coupling. In the emerging field of on-surface synthesis, dehalogenative aryl-aryl coupling is unarguably the most prominent tool for the fabrication of covalently bonded carbon-based nanomaterials. Despite its importance, the reaction kinetics are still poorly understood. Here we present a comprehensive temperature-programmed x-ray photoelectron spectroscopy investigation of reaction kinetics and energetics in the prototypical on-surface dehalogenative polymerization of 4,4''-dibromo-p-terphenyl into poly(para-phenylene) on two coinage metal surfaces, Cu(111) and Au(111). We find clear evidence for reversible dehalogenation on Au(111), which is inhibited on Cu(111) owing to the formation of organometallic intermediates. The incorporation of reversible dehalogenation in the reaction rate equations leads to excellent agreement with ...

Latest version: v1 Publication date: Mar 02, 2021

Extensive benchmarking of DFT+U calculations for predicting band gaps

DOI 10.24435/materialscloud:jx-fp

Nicole Kirchner-Hall, Wayne Zhao, Yihuang Xiong, Iurii Timrov, Ismaila Dabo

Accurate computational predictions of band gaps are of practical importance to the modeling and development of semiconductor technologies, such as (opto)electronic devices and photoelectronchemical cells. Among available electronic-structure methods, density-functional theory (DFT) with the Hubbard U correction (DFT+U) applied to band edge states is a computationally tractable approach to improve the accuracy of band gap predictions beyond that of DFT calculations based on (semi)local functionals. At variance evitor bPT approximate spectral-potential method when U is determined by imposing the piecewise linearity of the total energy with respect to electronic occupations in the Hubbard marriel (lths removing self-interaction errors in this subspace), thereby providing a (heurisci) justification for using DFT+U to predict band gaps. However, it is ...

Latest version: v1 Publication date: Mar 02, 2021

Building a consistent and reproducible database for adsorption evaluation in Covalent-Organic Frameworks 🕁 🖧

DOI 10.24435/materialscloud:5q-jt

Daniele Ongari, Aliaksandr V. Yakutovich, Leopold Talirz, Berend Smit

We present a workflow that traces the path from the bulk structure of a crystalline material to assessing its performance in carbon capture from coal's postcombustion flue gases. This workflow is applied to a database of 324 covalent–organic frameworks (COFs) reparting the following steps: (1) optimization of the crystal structure (atomic positions and unit cell) using density functional theory, (2) fitting atomic point charges based on the electron density, (3) characterizing the pore geometry of the structures before and affer optimization of the crystal structure (atomic positions and unit cell) using density functional theory, (2) fitting atomic point charges based on the electron density, (3) characterizing the pore geometry of the structures before and affer optimization of the structures before and affer coptimization of the crystal structure and Database for Computational Science (AiiDA). Both the workflow and the ...

Latest version: v8 Publication date: Feb 24, 2021

LET'S BROADEN THE HORIZON

THE BEZOS MANDATE: EXTERNALIZABLE SERVICE INTERFACES

- 1) All teams will henceforth **expose their data and functionality through service interfaces.**
- 2) Teams must communicate with each other through these interfaces.
- 3) There will be no other form of interprocess communication allowed.
- 4) All service interfaces, without exception, must be designed **from the ground up to be externalizable**.

IN ACTION: OPTIMADE UNIVERSAL REST API

About us

Designing new materials suitable for specific applications is a long, complex, and costly process. Researchers think of new ideas based on intuition and experience. Their synthesis and evaluation require a tremendous amount of trial and error. In the last few years, there has been a major game change in materials design. Thanks to the exponential growth of computer power and the development of robust first-principles electronic structure codes, it has become possible to perform large sets of calculations automatically. This is the burgeoning area of high-throughput ab initio computation. Such calculations have been used to create large databases containing the calculated properties of existing and hypothetical materials, many of which have appeared online:

- the AFLOW distributed materials property repository
- the Harvard Clean Energy Project Database
- the Materials Cloud
- the Materials Project
- the NoMaD (Novel Materials Discovery) Repository
- the Open Quantum Materials Database
- the Computational Materials Repository
- the Data Catalyst Genome
- the Materials Platform for Data Science
- the Joint Automated Repository for Various Integrated Simulations

• ...

The **Open Databases Integration for Materials Design** (OPTIMADE) consortium aims to make materials databases interoperational by developing a common REST API.

OPTIMADE consortium's list of providers.

This is a friendly client to search through databases and other implementations exposing an OPTIMADE RESTful API. To get more information about the OPTIMADE API, please see the offical web page. All providers are retrieved from the

Note: The structure property assemblies is currently not supported. Follow the issue on GitHub to learn more.

► FAQ

EXPLORE ARCHIVE

Is Log

Query a provider's database

Select a provider		~
No provider chosen		\checkmark
	0 results > >	
Apply filters		
Basic	Raw	
Chemistry		
Chemical Formula		
Elements		▲ Hide Periodic Table
	Structures can in	clude any chosen elements (instead of all)
	H Li Be	He B C N O F Ne

IN ACTION: OPTIMADE UNIVERSAL REST API

Help Improve the application: If Report a bug * Suggest This is a friendly client to search through databases and other imp get more information about the OPTIMADE API, please see the o OPTIMADE consortium's list of providers. Note: The structure property assemblies is currently not support	Na Mg K Ca Sc Ti V Cr Mn Fe	Co8Ge12Li12O48 (id=mp-1013807)	Quantum ESPF	
get more information about the OPTIMADE API, please see the o OPTIMADE consortium's list of providers. Note: The structure property assemblies is currently not suppo	K Ca Sc Ti V Cr Mn Fe	Co8Ge12Li12O48 (id=mp-1013807)		
Note: The structure property assemblies is currently not support			About the Quantum ESPRESSO in	
	Bb Sr Y Zr Nh Mo Tc Bu		Instructions	
► FAQ			Acknowledgements	Drag to rotate, scroll to zoom, right-click for other
▶ Log Query a provider's database Select a provider Apply filters Basic Raw Chemistry	Fr Ra # Rt Db Sg Bh Hs • La Ce Pr Nd Pm # Ac Th Pa U Np umber of Elements		The crystal structure has been su Adapt the parameters below and Select here the pseudopotential lib Select here the magnetism/smeari	
Chemical Formula e.g., (H2O)2 Na Cel Elements Critical Cel Structures can include any chosen e	ell imensionality OMolecule Wire Planar Bull		Select here the k-points distance (and smearing (eV) in case of frac	
H Nur Li Be Prc Na Mg Prc	rovider specific rovider ID NB! Will take precedence	Crystallographic Information File v1.0 (.cif) 🗸		- Carlana - Carlana
Rb Sr Y Zr Nb Mo Tc Ru Cs Ba H Ta W Re Os Resu Fr Ra # Rf Db Sg Bh A	Q Search ults Ascending id	Use in QE Input Generator		
*	< Showing 1-20 of 3352 results > >>			
Cost		ture detaile Sites		

QUANTUM-AS-A-SERVICE (AiiDAlab from Jul 2021)

.start-0 - Jupyter Notebook x >_ aiid	a@b8f2bf3a041a:~ × +												0
\leftrightarrow \rightarrow \bigcirc \bigcirc \bigcirc \Rightarrow ab63397873ac.eu.ngrok.io/apps	apps/home/start.ipynb							 2	о Тр	0	Se	* 🚯	1
	😇 jupyter					Edit Ar	p Logout						
	Executing 'aiidalab' in DE	VELOP mode.	Tasks	App Store	? Help								
		esent	U RNTUM	ESPRESSO	Manage App	S Modified		,	8				
	- OPTIMADE Client		OPTIMA Open Datat for Material	DE bases Integration s Design	Manage App	♥ Update available							

QUANTUM-AS-A-SERVICE (AiiDAlab from Jul 2021)

.start-0 - Jupyter Notebook x >_ aiid	a@b8f2bf3a041a:~ × +												0
\leftrightarrow \rightarrow \bigcirc \bigcirc \bigcirc \Rightarrow ab63397873ac.eu.ngrok.io/apps	apps/home/start.ipynb							 2	о Тр	0	Se	* 🚯	1
	😇 jupyter					Edit Ar	p Logout						
	Executing 'aiidalab' in DE	VELOP mode.	Tasks	App Store	? Help								
		esent	U RNTUM	ESPRESSO	Manage App	S Modified		,	8				
	- OPTIMADE Client		OPTIMA Open Datat for Material	DE bases Integration s Design	Manage App	♥ Update available							

CONCLUSIONS

ovanna.lani@epfl.ch

Chiara Cignarella

1. Materials enable the technologies that power our economy, our lives and our society

2. We can discover novel materials with a speed that mirrors ICT technologies, rather than any physical infrastructure

3. We can redistribute simulations tools, data, and services at will and to the entire world

MORE IMPORTANT CONCLUSIONS

1. Do we have a career model for the scientists that build computational science? (as we do have instead for synchrotrons, radiotelescopes, supercomputers...)

2. Do we have a funding model for this infrastructure?

ACKNOWLEDGEMENTS

The Materials Cloud teams Aiida And

Carl Simon

Adorf

(EPFL)

Flaviano dos Santos (EPFL)

Marco Borelli (EPFL)

Pizzi

(EPFL)

Leonid Elsa Kahle Passaro (EPFL) (EPFL)

Marnik Bercx (EPFL)

Ramirez

(EPFL)

Leopold Talirz (EPFL)

Sewell Yakutovich (EPFL) (EPFL)

Chris

Smit

(EPFL)

Sebastiaan

P. Huber

(EPFL)

Joost VandeVondele

(ETHZ,CSCS)

Thomas Schulthess (ETHZ,CSCS)

http://www.aiida.net http://www.materialscloud.org

Contributors for the 40+ plugins: Quantum ESPRESSO, Wannier90, CP2K, FLEUR, YAMBO, SIESTA, VASP, CASTEP, CRYSTAL, ...

Contributors to aiida-core and former AiiDA team members — Oscar Arbelaez, Michael Atambo, Valentin Bersier, Marco Borelli, Jocelyn Boullier, Jens Bröder, Ivano E. Castelli, Andrea Cepellotti, Keija Cui, Vladimir Dikan, Marco Dorigo, Y.-W. Fang, Fernando Gargiulo, Marco Gibertini, Davide Grassano, Dominik Gresch, Conrad Johnston, Rico Häuselmann, Daniel Hollas, Eric Hontz, Jianxing Huang, Christoph Koch, Espen Flage-Larsen, Ian Lee, Daniel Marchand, Antimo Marrazzo, Andrius Merkys, Simon Pintarelli, Nicolas Mounet, Tiziano Müller, Gianluca Prandini, Philip Rüßmann, Riccardo Sabatini, Ole Schütt, Phillippe Schwaller, Andreas Stamminger, Atsushi Togo, Daniele Tomerini, Nicola Varini, Martin Uhrin, Jason Yu, Austin Zadoks, Bonan Zhu, Mario Zic, Spyros Zoupanos

ACKNOWLEDGEMENTS

http://nccr-marvel.ch

Swiss National Centre for Computational Design and Discovery of Novel Materials (2014-18, 2018-22, 2022-26)

http://max-centre.eu

DRIVING THE EXASCALE TRANSITION

H2020 Centre of Excellence MaX: Materials Design at the Exascale (2015-18, 2018-21)

https://www.big-map.eu

H2020 Battery Interface Genome – Materials Acceleration Platform (Battery 2030+) (2020-23)

Related projects: H2020 Nanoscience Foundries and Fine Analysis H2020 European Materials Modelling Council H2020 Marketplace EPFL H2020 Intersect H2020 DOME 4.0 H2020 OpenModel H2020 NEP SOLVAY H2020 EPFL Fellows H2020 EPFL Innovators H2020 Marie Curie MarketPlace PFL Open Science CHEMONT PASC FNSNF PRACE Swiss National Science Foundation **INTERSECT** IBM Constellium SAMSUNG Innosuisse ndSc Solvay form for Advanced Scientific Computing Samsung Richemont Varinor * EMMC

"Things were done very differently on the farm when I was your age, Kenny."